last update 20 Sep 2009 |
00001 /* 00002 * Copyright (C) 1998-2004 00003 * Lehrstuhl fuer Technische Informatik, RWTH-Aachen, Germany 00004 * 00005 * 00006 * This file is part of the Computer Vision and Robotics Library (CVR-Lib) 00007 * 00008 * The CVR-Lib is free software; you can redistribute it and/or 00009 * modify it under the terms of the BSD License. 00010 * 00011 * All rights reserved. 00012 * 00013 * Redistribution and use in source and binary forms, with or without 00014 * modification, are permitted provided that the following conditions are met: 00015 * 00016 * 1. Redistributions of source code must retain the above copyright notice, 00017 * this list of conditions and the following disclaimer. 00018 * 00019 * 2. Redistributions in binary form must reproduce the above copyright notice, 00020 * this list of conditions and the following disclaimer in the documentation 00021 * and/or other materials provided with the distribution. 00022 * 00023 * 3. Neither the name of the authors nor the names of its contributors may be 00024 * used to endorse or promote products derived from this software without 00025 * specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00028 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00029 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00030 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 00031 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00032 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 00033 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00034 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 00035 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 00036 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00037 * POSSIBILITY OF SUCH DAMAGE. 00038 */ 00039 00040 00041 00042 /** 00043 * \file cvrMathLA.h 00044 * Definition of some useful global functions which are often needed 00045 * in Linear Algebra Algorithms. These include: 00046 * - householder: calculates householder vector and beta 00047 * - givens: calculates cos and sin values for Givens rotations 00048 * \author Peter Doerfler 00049 * \date 27.04.2004 00050 * 00051 * $Id: cvrMathLA.h,v 1.4 2005/01/21 17:05:36 alvarado Exp $ 00052 */ 00053 00054 #ifndef _CVR_MATH_LA_H_ 00055 #define _CVR_MATH_LA_H_ 00056 00057 #include "cvrVector.h" 00058 00059 00060 namespace cvr { 00061 00062 /** 00063 * Calculates the Householder vector \c v and the factor \c beta for 00064 * a %vector \c x (given as input in \c v). 00065 * 00066 * The resulting n-dimensional %vector \c v has the following properties: 00067 * - v[0] = 1, 00068 * - \f$ P = I_n - \beta v v^T\f$ is orthogonal, and 00069 * - /f$ Px=||x||_2e_1 00070 * , where I_n is the n-by-n identity matrix and e_1 the first 00071 * canonical vector. 00072 * 00073 * For more details see:<br> 00074 * Gene H. Golub and Charles F. Van Loan, "Matrix Computations", 00075 * 1996, The John Hopkins University Press, Baltimore and London 00076 * 00077 * @param v input: vector \c x; output: householder vector \c v 00078 * @param beta factor needed for householder transform 00079 * 00080 * @ingroup gUnassigned 00081 */ 00082 template<typename T> 00083 inline void householder(vector<T>& v, T& beta); 00084 00085 /** 00086 * Calculates the Householder vector \c v and the factor \c beta for 00087 * a %vector \c src. 00088 * 00089 * The resulting n-dimensional %vector \c v has the following properties: 00090 * - v[0] = 1, 00091 * - \f$ P = I_n - \beta v v^T\f$ is orthogonal, and 00092 * - /f$ Px=||x||_2e_1 00093 * , where I_n is the n-by-n identity matrix and e_1 the first 00094 * canonical vector. 00095 * 00096 * \b Note: The on-place version of householder(vector<T>&, T&) is 00097 * faster since the input vector is not copied first. 00098 * 00099 * For more details see:<br> 00100 * Gene H. Golub and Charles F. Van Loan, "Matrix Computations", 00101 * 1996, The John Hopkins University Press, Baltimore and London 00102 * 00103 * @param src vector \c x used to form the householder vector 00104 * @param v householder vector \c v 00105 * @param beta factor needed for householder transform 00106 * 00107 * @ingroup gUnassigned 00108 */ 00109 template<typename T> 00110 inline void householder(const vector<T>& src, vector<T>& v, T& beta); 00111 00112 /** 00113 * Calculates the cos (\c c) and sin (\c s) values needed for Givens 00114 * Rotations. 00115 * 00116 * The values \c c and \c s have the following property: 00117 * \f[ 00118 * \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^T 00119 * \begin{bmatrix} a \\ b \end{bmatrix} = 00120 * \begin{bmatrix} r \\ 0 \end{bmatrix}. 00121 * \f] 00122 * 00123 * For more details see:<br> 00124 * Gene H. Golub and Charles F. Van Loan, "Matrix Computations", 00125 * 1996, The John Hopkins University Press, Baltimore and London 00126 * 00127 * @param a first scalar 00128 * @param b second scalar 00129 * @param c cos value for Givens Rotation 00130 * @param s sin value for Givens Rotation 00131 * 00132 * @ingroup gUnassigned 00133 */ 00134 template<typename T> 00135 inline void givens(const T& a, const T& b, T& c, T& s); 00136 00137 } 00138 00139 #include "cvrMathLA_inline.h" 00140 00141 #endif