CVR-Lib last update 20 Sep 2009

cvr::linearLeastSquares::linearLeastSquares::parameters Class Reference

The parameters for the class linearLeastSquares. More...

#include <cvrLinearLeastSquares.h>

Inheritance diagram for cvr::linearLeastSquares::linearLeastSquares::parameters:

Inheritance graph
[legend]
Collaboration diagram for cvr::linearLeastSquares::linearLeastSquares::parameters:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual const std::string & name () const
virtual parametersclone () const
virtual parametersnewInstance () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

eAlgorithm algorithm
double rCondition


Detailed Description

The parameters for the class linearLeastSquares.

Constructor & Destructor Documentation

cvr::linearLeastSquares::linearLeastSquares::parameters::parameters (  ) 

Default constructor.

Reimplemented from cvr::linearAlgebraFunctor::linearAlgebraFunctor::parameters.

cvr::linearLeastSquares::linearLeastSquares::parameters::parameters ( const parameters other  ) 

Copy constructor.

Parameters:
other the parameters object to be copied

Reimplemented from cvr::linearAlgebraFunctor::linearAlgebraFunctor::parameters.

cvr::linearLeastSquares::linearLeastSquares::parameters::~parameters (  )  [virtual]


Member Function Documentation

virtual parameters* cvr::linearLeastSquares::linearLeastSquares::parameters::clone (  )  const [virtual]

Returns a pointer to a clone of the parameters.

Reimplemented from cvr::linearAlgebraFunctor::linearAlgebraFunctor::parameters.

parameters& cvr::linearLeastSquares::linearLeastSquares::parameters::copy ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from cvr::linearAlgebraFunctor::linearAlgebraFunctor::parameters.

virtual const std::string& cvr::linearLeastSquares::linearLeastSquares::parameters::name (  )  const [virtual]

Returns the complete name of the parameters class.

Reimplemented from cvr::linearAlgebraFunctor::linearAlgebraFunctor::parameters.

virtual parameters* cvr::linearLeastSquares::linearLeastSquares::parameters::newInstance (  )  const [virtual]

Returns a pointer to a new instance of the parameters.

Reimplemented from cvr::linearAlgebraFunctor::linearAlgebraFunctor::parameters.

parameters& cvr::linearLeastSquares::linearLeastSquares::parameters::operator= ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

Reimplemented from cvr::linearAlgebraFunctor::linearAlgebraFunctor::parameters.

virtual bool cvr::linearLeastSquares::linearLeastSquares::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

Read the parameters from the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from cvr::linearAlgebraFunctor::linearAlgebraFunctor::parameters.

virtual bool cvr::linearLeastSquares::linearLeastSquares::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

Write the parameters in the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from cvr::linearAlgebraFunctor::linearAlgebraFunctor::parameters.


Member Data Documentation

eAlgorithm cvr::linearLeastSquares::linearLeastSquares::parameters::algorithm

Which algorithm should be used to solve the least squares problem.

The available methods are:

  • QR: uses the QR (or LQ) decomposition of the matrix A. This method can be employed if and only if the matrix A has full rank.
  • CompleteFactorization: performs a complete orthogonal factorization
  • SVD: uses a singular value decomposition. This is the recomended method if the matrix A is ill-conditioned, and the only one used if LAPACK is not found.
  • DCSVD: uses a divide-and-conquer singular value decomposition.

Default value: SVD

double cvr::linearLeastSquares::linearLeastSquares::parameters::rCondition

The rCondition is used to determine the effective rank of the matrix A, which is defined as the order of the largest leading triangular submatrix R11 in the QR factorization with pivoting of A, whose estimated condition number is less than 1.0/rCondition.

For intance, all singular values less than or equal to this value multiplied by the largest singular value are set to zero.

Default value: 0.0


The documentation for this class was generated from the following file:

Generated on Sun Sep 20 22:08:59 2009 for CVR-Lib by Doxygen 1.5.8