CVR-Lib last update 20 Sep 2009

cvr::ransacEstimation< E >::ransacEstimation::parameters Class Reference

The parameters for the class ransacEstimation. More...

#include <cvrRansacEstimation.h>

Inheritance diagram for cvr::ransacEstimation< E >::ransacEstimation::parameters:

Inheritance graph
[legend]
Collaboration diagram for cvr::ransacEstimation< E >::ransacEstimation::parameters:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 parameters ()
 parameters (const parameters &other)
 ~parameters ()
parameterscopy (const parameters &other)
parametersoperator= (const parameters &other)
virtual parametersclone () const
virtual parametersnewInstance () const
virtual const std::string & name () const
virtual bool write (ioHandler &handler, const bool complete=true) const
virtual bool read (ioHandler &handler, const bool complete=true)

Public Attributes

int numberOfIterations
bool adaptiveContamination
int numberOfCorrespondences
float confidence
float contamination
float maxError
E::parameters initialEstimationParameters
uniformDiscreteDistribution::parameters rndParameters


Detailed Description

template<class E>
class cvr::ransacEstimation< E >::parameters

The parameters for the class ransacEstimation.

Constructor & Destructor Documentation

template<class E>
cvr::ransacEstimation< E >::ransacEstimation::parameters::parameters (  ) 

Default constructor.

Reimplemented from cvr::functor::functor::parameters.

template<class E>
cvr::ransacEstimation< E >::ransacEstimation::parameters::parameters ( const parameters other  ) 

Copy constructor.

Parameters:
other the parameters object to be copied

Reimplemented from cvr::functor::functor::parameters.

template<class E>
cvr::ransacEstimation< E >::ransacEstimation::parameters::~parameters (  )  [virtual]

Destructor.

Reimplemented from cvr::functor::functor::parameters.


Member Function Documentation

template<class E>
virtual parameters* cvr::ransacEstimation< E >::ransacEstimation::parameters::clone (  )  const [virtual]

Returns a pointer to a clone of the parameters.

Implements cvr::functor::functor::parameters.

template<class E>
parameters& cvr::ransacEstimation< E >::ransacEstimation::parameters::copy ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

template<class E>
virtual const std::string& cvr::ransacEstimation< E >::ransacEstimation::parameters::name (  )  const [virtual]

Returns the name of this parameter class.

Implements cvr::functor::functor::parameters.

template<class E>
virtual parameters* cvr::ransacEstimation< E >::ransacEstimation::parameters::newInstance (  )  const [virtual]

Returns a pointer to a new instance of the parameters.

Implements cvr::functor::functor::parameters.

template<class E>
parameters& cvr::ransacEstimation< E >::ransacEstimation::parameters::operator= ( const parameters other  ) 

Copy the contents of a parameters object.

Parameters:
other the parameters object to be copied
Returns:
a reference to this parameters object

template<class E>
virtual bool cvr::ransacEstimation< E >::ransacEstimation::parameters::read ( ioHandler handler,
const bool  complete = true 
) [virtual]

Read the parameters from the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from cvr::parametersManager::parametersManager::parameters.

template<class E>
virtual bool cvr::ransacEstimation< E >::ransacEstimation::parameters::write ( ioHandler handler,
const bool  complete = true 
) const [virtual]

Write the parameters in the given ioHandler.

Parameters:
handler the ioHandler to be used
complete if true (the default) the enclosing begin/end will be also written, otherwise only the data block will be written.
Returns:
true if write was successful

Reimplemented from cvr::parametersManager::parametersManager::parameters.


Member Data Documentation

Flag for automatic adjustment of the degree of contamination after each successfull guess.

The contamination is only decreased and never increased. This parameter has a direct effect on the number of iterations performed. The functor will always terminate after at most the maximum numberOfIterations is reached, though.

If adaptive contamination is turned on, the apply-methods return true even if the detected inliers suggest a contamination above the parametrized contamination.

Default: false.

The number of trials in adaptive mode depends on the estimated contamination and the confidence, under which the result is correct.

Default: .99

The expected degree of contamination.

This is the part of the total correspondences that is assumed to be contaminated.

Default: .5

Some estimators allow configurations that you may want to control explicitelly.

These are the parameters set to the basic estimator before any computations are made.

The maximum error for a single correspondence or the averaged size of the residual.

Default: .8f

The number of correspondences drawn at each trial to estimate the transformation.

Literature advises to use the minimum number correspondences that are required which is proved optimal under a statistical context.

The minimum number of correspondences required to estimate a transformation can be obtained with C=(dof()+1)/2 (assuming integer division), where dof() is a method provided in the interface of the estimators. If the number provided here is less than that minimum C, then C is used instead.

Default: -1 (always use the minimum number of correspondences)

Maximal number of iterations used while trying to converge to a solution.

Default: 50

Parameters for uniform discrete distribution.


The documentation for this class was generated from the following file:

Generated on Sun Sep 20 22:09:04 2009 for CVR-Lib by Doxygen 1.5.8